Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Sighten‘s solar energy system production model incorporates key aspects of the industry’s most sophisticated models while maintaining simplicity of user inputs.

...

Sighten offers several modeling improvements over PVWatts. For example, Sighten's model takes into account shade recovery from optimizers and microinverters, unlike PVWatts. Differences in methodology are listed below.

Component

Sighten 

PVWatts 

Weather data 

NREL TMY Stations 

NREL TMY Stations 

Shading 

SAM2 shading model 

User input 

Module production 

DeSoto 5-parameter 

User input 

Inverter efficiency 

SAM CEC Efficiency 

User input

Sighten production calculation

...

  • Note on Shading: the percentage shading implies the percentage of PV modules IN EACH STRING that receive "unshaded" radiation versus "shaded" radiation
  • String Inverters: if the array uses a string inverter:
    • The string voltage is calculated as a composite of the unshaded and shaded PV modules
    • Find array max power (DC) by calculating string voltage as a function of a universally-applied string current
    • Find module voltage on the I-V curve for unshaded module
    • Find module voltage on the I-V curve for shaded module
    • String voltage is the sum of voltages generated by unshaded and shaded modules in their respective proportion
    • Iterate until maximum of product of string voltage and array current is found
  • DC to AC Conversion: convert array power (DC) into array power (AC) based on inverter efficiency specifications (per spec sheet) and derate assumptions applied to all string inverters:
    • wiring_dc = 0.980
    • mismatch  = 0.980
    • diodes    = 0.995
    • soiling   = 0.950
    • wiring_ac = 0.990
  • Micro invertersMicroinverters: if the array uses microinverters
    • Find array max power (DC) by calculating unshaded and shaded module voltages as functions of a individually-managed current
      • Find module max power (DC) on the I-V curve for unshaded module
      • Find module max power (DC) on the I-V curve for shaded module
      • Convert module power (DC) into module power (AC) for unshaded and shaded modules based on inverter efficiency specifications (per spec sheet) and derate assumptions applied to all microinverters:
        • wiring_dc = 0.995
        • mismatch  = 1.000
        • diodes    = 0.995
        • soiling   = 0.950
        • wiring_ac = 0.990
      • Array power (AC) is the sum of power (AC) generated by unshaded and shaded modules in their respective proportion of the array

...